If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+10y+10=5
We move all terms to the left:
y^2+10y+10-(5)=0
We add all the numbers together, and all the variables
y^2+10y+5=0
a = 1; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·1·5
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{5}}{2*1}=\frac{-10-4\sqrt{5}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{5}}{2*1}=\frac{-10+4\sqrt{5}}{2} $
| (9x-1)+(13x-25)=360 | | -4(4k-2)=-104 | | 120=(x+2x)x2 | | -3x-5=-2x-20 | | -4-8x=9x+20 | | 4+(4x+4)=-112 | | (0.25)^5÷2=32^x | | s/29=30 | | 625=5g | | -124=5(4v+3) | | x+x+1720+x-330=4930 | | 0.5x+20=-8 | | x-20+2x+80=90 | | 2x+1-5x+5=180 | | 47a=423 | | x+25+2x+80=180 | | 15=q/15 | | 7s-14=180 | | 2x-4=2(x–1)+3 | | 6(5x-3)+2=14,x= | | 3w-13=1+(52-12w) | | 2x+3-x+6=180 | | x=-20/2(5) | | 4(3x+15)=2(x+40) | | 25x3=1600 | | (2x-10)=4x+16 | | 24-5x=4-x | | 6.9÷3=g | | 2x^2-22x-24=0 | | 4x-6=6-2× | | 4+2x-70=180 | | y-7.83=3.84 |